Elementary maths for GMT

Algorithm analysis

Trees

Part I. Binary Search Trees

Goal

Analyzing data structures
Example: binary search trees
Overview

— Definition

— Properties

— QOperations

Analyzing properties and running times of operations

%TL\% Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

Storing and modifying data

* Array
— fast searching, slow insertion

£ 31 3 62 3
2 1 3 1 3 1

« Linked list
— slow searching, fast insertion

g Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

Data structures for maintaining sets

I T

Unsorted array O(n) O(1)
Sorted array O(logn) O(n)
Unsorted list O(n) O(1)
Sorted list O(n) O(n)
Balanced search tree O(logn) O(logn)

%@ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

Trees

« Each of the n nodes contains
— data (number, object, etc.)
— pointers to its children (themselves trees)
* Primitives operations
— Accessing data: 0(1) time
— Traversing link: 0(1) time

§ g% Universiteit Utrecht

%§ Elementary maths for GMT — Algorithm analysis - Trees

Binary trees

« Every node has only 2 children
— children can be dummies

NI

%T§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

Binary search trees

« Binary trees with “"comparable” values

 For a node with value x:
— Left sub-tree contains values < x
— Right sub-tree contains values > x

SESYSER!

%T§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

Tree property - Height

 The height h of a tree is the length of the longest path
 Property ofthe height: 0 <h<n-1

 Example
— height=4

: iversiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees
N y J y

Binary tree property - Height

MaxX Mmin
) /CB\ 0 1

- O:O000

— 2
n—1 | 2log n
?{%§ 1 Ltr Elementary maths for GMT — Algorithm analysis - Trees 10

\

@

Searching for an element

 Example in a binary search tree: searching for 7
— Start at root

— At every node:
» Check if you found it 6

» Otherwise choose left or right child
according to value in the current node @ @

— Until you find the value or

you are at a leaf node 0 e 6 9

* Running time is 0(h)

&

Wi,
b é Universiteit Utrecht

AN

Elementary maths for GMT — Algorithm analysis - Trees

g,
N

£

Inserting an element

 Example in a binary search tree: inserting 7/
— First search for the value 7 (previous slide)
— If already present, then nothing to do
— Else replace the dummy node

* Running time is 0(h)

Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

In-order tree traversal

 Visit the nodes sequentially
— Running time 0(n)

« Example when storing
value x in-between

LC RC ..)
visiting the children
- {1,4,5,6, 6, 8, 9}
A
Z NS Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees 13

NS

Removing an element (1/3)

« Example in a binary search tree: removing 7
— First search for the value 7

— If node has at least one dummy node as a child, delete node and
attach other child to parent

§ g% Universiteit Utrecht

= Elementary maths for GMT — Algorithm analysis - Trees 14
U Y g Y

Removing an element (2/3)

 Example in a binary search tree: removing 8
— Search for 8

— If left (resp. right) child is a dummy node, attach right (resp. left)
child to parent

Wy
U~

Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees 15

Removing an element (3/3)

« Example in a binary search tree: removing 4
— Search for 4

— Find in-order successor (here 5)

« it will always exists and its left child G
will always be a dummy node

— Replace the node to remove with (5) (8)
the successor node

— Remove successor in the previously o e e 9

described way

* Running time to find the in-order successor is 0 (h)

%
W

N/
4

S
L

Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees 16

Summary on binary search trees

Parameter / Operation Property / Time

Height h |2logn| <h<n-1
Accessing data, traversing a link 0(1)
In-order traversal 0(n)
Search, insertion and removal 0(h)

%ﬁ@ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

17

Part |l: AVL trees

AVL tree: a balanced binary tree

 An AVL tree (Adelson-Velskii Landis) is a binary search

tree where for every internal node v, the heights of the
children of v can differ at most by 1

« Example where the heights are shown next to the nodes

: Universiteit Utrecht

Elementary maths for GMT — Algorithm analysis - Trees

Height of an AVL tree

* Property: the height of an AVL tree storing n keys is
O(log n)

* Proof: let N(h) be the minimum number of internal nodes
of an AVL tree of height h

NO)=1and N(1) =2

For h > 1, an AVL tree of height h contains at least a root node, one
AVL sub-tree of height h — 1, and one AVL sub-tree of height
h—-2,so0N(h)=1+N(h—-1)+N(h—2)

Since N(h—1) > N(h— 2),we have N(h) > 2 N(h — 2), and so
N(h) >2N(h—-2),N(h)>4N(h—4),N(h) >8N(h—6),..

So N(h) > 2!N(h — 2i)

h+1

. _ h-1, h=1 h—1 h-1 h+1
If we choose i == N(h) > 2 2 N(h—Z(T)) — 2z N1 =2z,
thenh < 2log(N(h)) — 1
So the height of an AVL tree is O(logn)

%@ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees 20

Insertion In an AVL tree

* Insertion is as in a binary search tree: always done by
expanding a node

 Example: insert 10 in the following AVL tree

(62
(42 @

(5) (& @4
(1) (9

N
NS

N
7
Z00

 Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

Unbalanced after insertion

* Letw be the inserted node (here 10)
* Let z be the first unbalanced ancestor of w (here 11)

* Lety be the child of z with higher height
(must be an ancestor of w) (here 8)

« Let x be the child of y with higher height
(must be an ancestor of w, or w itself)
(here 9)

\‘W%
ns
N

A
N

 Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

Tri-node restructuring

« Case 1: single rotation

* Perform the rotations needed to make y the top most node
of the z-y-x sub-tree

§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

Tri-node restructuring

¢ Symmetric case

Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

Tri-node restructuring

« Case 2: double rotation

T, T,
W
T§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

Tri-node restructuring

¢ Symmetric case

Tl TZ
W
T§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

Tri-node restructuring - Summary

Left Right Case Left Left Case

Balanced

A

%T§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

27

Removal in an AVL tree

 Removal begins as in a binary search tree, which means
the node removed will become an empty node

« Example: remove 5 in the following AVL tree

A

%T§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

28

\

Unbalanced after removal

« Letw be the parent of the removed node (here 4)
« Let z be the first unbalanced ancestor of w (here 6)

« Lety be the child of z with higher height
(s now not an ancestor of w) (here 11)

« Letx be
— the child of y with higher height if
heights are different, or

— the child of y on the same side
as y If heights are equal
(here 14)

&

N | |
"§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

AN

@

Rebalancing after a removal

* Performs rotations to make y the top most of the z-y-x tree

* As this restructuring may upset the balance of another
node higher in the tree, we must continue checking for
balance until the root is reached

Repeated rebalancing

 Example: remove 4

Elementary maths for GMT — Algorithm analysis - Trees

Repeated balancing

A

unbalanced!

Elementary maths for GMT — Algorithm analysis - Trees

Running times for AVL trees

* Finding a value takes O(logn) time
— because height of a tree is always O (logn)

Traversal of the whole set takes 0(n) time

Insertion takes O (logn) time

— Initial find takes O (logn) time

— 0 or 1 rebalancing of the tree, maintaining height takes 0 (logn)
time

Removal takes O (logn) time

— Initial find takes O (logn) time

— 0 or more rebalancing of the tree, maintaining height takes 0(logn)
time

§% Universiteit Utrecht

Elementary maths for GMT — Algorithm analysis - Trees 33

AVL trees vs. hash tables

« In an AVL tree, insert/delete/search is O(logn) time, in a hash
table they take O(1) time in practice

* In an AVL tree, searching for the smallest value > x takes
O(logn) time, in a hash table it takes a linear time

« Enumerating the set in order takes 0(n) time in an AVL tree, in a
hash table it cannot be done quickly: O(nlogn)

« Finding the number of values between given x and y takes
O (logn) time with a simple variation of an AVL tree, in a hash
table it takes linear time

> An AVL tree I1s more versatile than a hash table

§ i itei . .
%‘K{%‘“ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees

Other trees

- BBJ[a]-tree are not height-balanced but weight-balanced.
Height is also O(logn)

« Red-black trees are balanced with a different scheme and
also have height 0 (logn)

* For background storage, B-trees exist and have a degree
higher than two (more than 2 children)

« For 2- and higher-dimensional data, various trees exist
— Kd-trees
— Quadtrees and octrees
— BSP-trees
— Range trees
— R-trees

NI

%T§ Universiteit Utrecht Elementary maths for GMT — Algorithm analysis - Trees 35

